Kostka Polynomials and Energy Functions in Solvable Lattice Models
نویسندگان
چکیده
and Energy Functions in Solvable Lattice Models Atsushi Nakayashiki and Yasuhiko Yamada Graduate School of Mathematics, Kyushu University Abstract The relation between the charge of Lascoux-Schuzenberger and the energy function in solvable lattice models is clari ed. As an application, A.N.Kirillov's conjecture on the expression of the branching coe cient of c sln=sln as a limit of Kostka polynomials is proved.
منابع مشابه
Affine charge and the k-bounded Pieri rule
We provide a new description of the Pieri rule of the homology of the affine Grassmannian and an affine analogue of the charge statistics in terms of bounded partitions. This makes it possible to extend the formulation of the Kostka–Foulkes polynomials in terms of solvable lattice models by Nakayashiki and Yamada to the affine setting. Résumé. Nous proposons une nouvelle description de la règle...
متن کاملInhomogeneous lattice paths, generalized Kostka polynomials and An−1 supernomials
Inhomogeneous lattice paths are introduced as ordered sequences of rectangular Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara’s theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials. One of these provides a generalization o...
متن کاملUbiquity of Kostka Polynomials
We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...
متن کاملComposition Kostka functions
Macdonald defined two-parameter Kostka functions Kλμ(q, t) where λ, μ are partitions. The main purpose of this paper is to extend his definition to include all compositions as indices. Following Macdonald, we conjecture that also these more general Kostka functions are polynomials in q and t with non-negative integers as coefficients. If q = 0 then our Kostka functions are Kazhdan-Lusztig polyn...
متن کاملTableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions
The k-Young lattice Y k is a partial order on partitions with no part larger than k. This weak subposet of the Young lattice originated [9] from the study of the k-Schur functions s (k) λ , symmetric functions that form a natural basis of the space spanned by homogeneous functions indexed by k-bounded partitions. The chains in the k-Young lattice are induced by a Pieri-type rule experimentally ...
متن کامل